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§1. Introduction.

Iﬁ this paper we develop a method for approximating the
eigenvalues of a class of non self-adjoint ordinary differential
operators.

There is an extensive literature dealing with the problem
of finding upper and lower bounds for large classes of self-
adjoint’bperators on a Hilbert space. ‘This work covers many
ordinary and partial differential operators of interest in
applications. - For the case of self—adﬂoint operators which
are bounded belcow upper bounds are provided by the well-known
Rayleigh-Ritz method. The method of intermediate problems
introduced by Weinstein [36,37] provides lower bounds. This
method was extended by Weinstein [38,39,40,41], Aronszajn.and
and Weinstein [5], Aronszajn [3,4], Weinberger [34,35],

Baéley [7], Bazley and Fox [8,9], and Stenger [28]. For an
exposition of these results and further references see Gould
[19] and Fox and Rheinboldt [17]. Fichera [15,16] has
developed a method for finding lower bounds which is an

alternative to the method of intermediate problems.



Throughout the paper we consider an eigenvalue problem

of the form

Lf = Lf + Af = Af,
‘ Uf = 0, k= 1,+,m,
where
Lf = imf(m) + of, ¢ real,
the mEE order boundary conditions ka = 0 are self-adjoint

relative to L, and A 1is any ordinary differential operator
of order less than m. Thus we consider non self-adjoint
operators which are lower order perturbations of the self-adijicint
operator L. Assuming the eigenvalues and eigenvectors of L
are knoﬁh we consider the problem of approximating the
eigenvalues of L. This problem is completely formulated in
Section 2.

The main results of Section 3, Theorems 3.2 and 3.3,
locate the eigenvalues of L. in circles centered at the
eigenvalues of L. These basic location results are used in
the formulation of the method for obtaining improvable
approximations which is developed in Section 4. These results
involve a method for estimating the pefturbation of eigenvalues
which depends on certain estimates for the resolvent operator
of L. Variations of this method have been used by many
authors to estimate eigenvalues. The result of Theorem 3.2

is proved by Schwartz [27] for the case where A ‘is a bounded

operator. Agmon [1] used such estimates, especially estimates



similar to that giveﬁ in Lemma 3.5 which depend on the higher
dimensional version of the inequality in Lemma 3.3, to derive
results on the angular distribution‘of eigenvalues of non self-
adjoint elliptic parfial differential operators. Clark [12]

~

shows that the eigenvalues of L are related to the

Mk
eigenvalues A, of L by ]Ak— uk] ﬁ_O(IAk]j/m) where j
is the order of A. |

Tﬁe main results of this paper are in Section 4 in which
the Galerkin method is applied to i using the eigenvectors
of L as a basis. We describe the method in the special»case

where the eigenvalues

of L are all positive and distinct. For 'n = 1,2,°++ we

use the eigenvalues of in = Pni g ? where Sn is the span

of the first- n eigenvectors of 2 and P is the
projection onto Sn’ as approximations for the eigenvalues
of L. Assuming the circles discussed in the previous
paragraph are mutually disjoint, there will be one eigenvalue
of L in each circle: let My be the one in the pic-Ll _
circle. Alsc, one of the eigenvalues of in will be in the
pi:;r-1 cirele if p < n§ denote it by.- np(n). Theorem L.4

and the lemmas which follow it establish an estimate of the

form
> .
fu_-n_(m)] < € (n), =n>p

ep(n) can be explicitly calculated in many cases.



Sections 5 and 6 contain the proof of two results from
Section L.

In Section 7 we present several examples which illustrate
the results “of the paper. Tor three of the examples we hqve
computed the Galerkin eigenvalues and corresponding error
estimates for n = 1,°°+,20. Selected. results from these
computations are presented. A basic 1dea in the paper is
that e#plicit estimates for the eigenvalues can be obtained
if explicit walues can be found fcr the constants in certain
inequalities, such as (3.1), (4.3), and (4.4), which hold
for all functions in some functicn space. For the examples
treated in Section 7 values are given for the appropriate
constants.

This paper 1s a continuation of previous work by the
author [23,2#]; In [ZSJ a method was developed for the case
of a bounded'perturbation of an unboundéd seif-adjoint coperator
and in [24%] the method was extended to cover, in its
application to ordinary differential cperators, perturbations
of lower order which were subject to rather restrictive
conditions. The purpcse of this paper is tc extend and
improve this metheod so as to apply tc & large class of ordinary
differential operators which are lower order perturbations of
the self-adjoint operator L. Example 7.1 was also treated
in [24] and the numerical estimates obtained by the methods
of this paper are substantially better than those reported

there.



In [23] there is a discussion of other methods for
approximating the eigenvalues of.various types of non self-
adjoint operators. In addition to these methods Va;nikko
[31,32] has obtained the following result. Consider the

eigenvalue problem

ir = £™ 0l (0® - apcos,
(1.1) | :
U = 0, kK = 1,%e¢,m

Here ka =0, k=1,***,m are arbitrary boundary conditiocns
and we assume each of the coefficients is in some Sobolev
space: b & Hro, = € Hrk, k = 0,+++,m-1. (See Section 2 for
a definition of these spaces.) Let ¢1,¢2,'°' be a sequence
of polynomials of orders m,mtl,sc- which satisfy the
boundary conditions and for n = 1,2,°+* define the n-

dimensional eigenvalue problem

(1.2) det(Lo, - AMo,,Ld, 0, | ) = 0,

.'O’n

where Lf = £(™  and Mf = bFf. Let an eigenvalue u° of

(1.1) be a pole of order h of the resolvent of L with

respect to M:(L ~AM)~"!, For n = 1,2,°++ let u® be an

eigenvalue of (1.2). Then if Iim p® = 4% we have the

n-—>o
asymptotic estimate

W= w0 = o(nT(ErED/By

where r = min T and 7' = min [rk+m—k]. See [33]
0<k<m-1 0<k<m-1



for similar asymptotic error estimates for a more general
class of operators. | .
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§2. Formulation of the Eigenvalue Problem.

For m a nonnegative integer let Hm = Hmfa,b] denote

the m:h Sobolev space on the interval [a,b], i.e., the

set of all complex valued functions f such that f has

m-1 continuous derivatives, f(m—l) 1s absolutely continuous,
and £ (m is square integrable on [a,b]l. For k = 0,l,*++*,m
let |- 'k be the seminorm on Hm defined by
|f|k = fb lf(k)Iz dt 2
’ a
Let | ° im be the ncrm on .Hm defined by

k=0 k

Iel, = (10, 1513

and (',’)m be the inner product defined by

- b L
m - k
(f,8)_ = zk=0 f £ (k) g( ) 4t.
a

H with this inner product is a Hilbert space and H = L, .

2
Let L be the mt}—1 order differential cperator defined

by
Lf = 1™ 4 or,
where ¢ 1s a real constant and let

3
Af = § a (o £

be any differential operator of order j < m with continucus
coefficients. Let M = (MkZ) and N = (NkK) be complex

mXxm matrices such that rank(M,N) = m and define the



boundary forms Uz’°"’Um by

_ m oo (£-1)
Ut = 1, M (a) + Ny, f (b)1.

We wish to cbnsider the eigenvalue problem determined by
L=L+A and the boundary forms Uz?""Um’ i.e., the
problem of determining those complex values of A for which

there exists a nonzero function f E-Hm which satisfies

Lf = Af,

ka

"
(o]
L
w

I
[

’...’m
If we define Vm by

v, = {f | £ € H , Uf =0, k=1,"*,m

-

the problem can be restated as that of finding values of A
for which there exist f € Vo> f # 0 such that Lf = Af.
For the remaiﬁdef cf the paper we will consider L and i
to be Pestriéted to Vm. The operator L 1is formally self-
adjoint. We now assume the boundary conditicns are self-

adjoint relative to L, i.e.,

N CS D R I

m —
) (-1)37 Iy
1 g=1

Zqu,m+l—q NZq k,mtl~q’

L,k = 1,*++ m.

Then L will be a self-adjoint operatcr in the space L,

with domain Vm

(Lf,g), = (f,Lg),



for all f,g € Vm. The spectrum of L will consist of a
countable set of real eigenvalues, each with geometric
multiplicity less than or equal to m, which has no finite
limit point.J Numbering them in increasing order by magnitudé

and taking account of geometric multiplicities we have

o< e 1 .

(A1 < Ix

The eigenvectors x, ,x ** can be chosen to be orthonormal

22"

in L,; they are complete in L,. The spectrum of L
consists of eigenvalues, each with geometric multiplicity
less than or equal to m, with no finite 1limit boint.
Assuming the eigenvalues and eigenvectors of L are
known we consider the problem of approximating the eigenvalues
of L.
Throughout the paper we dencte the spectrum, the

resolvent set, and the resclvent of an cperator B by c(B),

p(B), and R,(B) respectively.
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§3. Basic Locaticn Theorems.

In this section we present a result which gives bounds
on the perturbations of the eigenvalues of L when L is
perturbed by the operator A. This result depends on certain

estimates for the resolvent operator R,(L) = (A-1) 71,
Lemma 3.1. If XA € o(L) and f € L,, then

(dist(A,o(L)))~

]RA(L)f% < £,

where dist(A,0(L)) denotes the distance from A to o(L).

Proof. Since

v 3 -lcf
Ry(LIE = ] o Q=27 H(Ex )%

Ve

we see that

oo}

2 ; - 2
IR, (LI, Loy |2 THE %)

A

< max [(A-r )72 (f,%,)]%.
< max (O L ()]
This giwves the result.
Lemma 3.2. If A € p(L) and fELz, then
IRA(L)f[m < sEp [ (A=) A -0 T [ £],.
Proof. YFfor f € L, we have

£ (A-L)Y(X=-1)T1f

AA-L) " F - L(A-L) 7 f
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= A-L) T - 1P -D 1™ C oy te,

Hence

-

2 — 2
]RA{L)fh = [ (A=e)(A-L)TIf - flo

(>4}

k

)

-1 I(Xk_c)(lk—l) (f,xk)l

in

sup | (A -e) (A -7 P[] 2,
WF .

We will need the following inequality. Its proof can be

found in Agmon [2].

Lemma 3.3. There are constants vy and 6 depending

only on a, b, and m such that
'k k.

P - —

(3.1) [£l, < vifl, " lflz

+.

sl £],
for all f E}Hm and k= 0,1,°*°*°,m.

0,1,°**,m, then

i

Lemma 3.4. If X € p(L) and k
IRy(WIE], < [£] (dist(X,0(L)))7 x

tﬁ + y(dist(A,o(L)) supl(kq-c)(kq-A)”if)k/m]
q

for all f'ElLb where vy and & are the constants introduced

in Lemma 3.3.

Proof. Using Lemmas 3.1, 3.2, and 3.3 we obtain
k k

[Ry(WEF], < vIR(LF], T }RA(L)flz 8] (-L) T,

< £l (dist(A,0(L))) x
[6 + y(dist(X,0(L)) sup iqu-c><xq-x>‘1|>k/m].
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Lemma 3.5. If X &€ p(L) and k = 0,**+,m then

IR (LIEf],

IA

[£],(dist(h,0 (L)) x

k
{7 [8 + y(dist(h,o(L)) sup| (A —) (A -0~ [HE/m123Ys
£=0 q q q

for all f & Lz.'
‘Proof. This is an immediate consequence of Lemma 3.Uu.

Remark. The val_ues of y and 6A in Lemma 3.3 are such
that (3.1) hoids for all f € H . In Lemmas 3.4 and 3.5 we
only used this inequality for functions of the form (A-L)7*f
for f €L, i.e., for functions in Vm. Hence when
considering a particulsr set of boundary conditions it may
be possible to choose smaller values for y and 6. See

Section 7 for further remarks on the choice of y and 6.

Lemma 3.6. If f EHj, where j is the order of A,

and A &€ p(L) then

o pax iazi2)9%nfnj<dist<x,o<L>))'1 x

IR, (LYAE]]. < (J
. A ] - .K:O aitib

{Zi=o [§ + v(dist(),0(L)) S%pl(Aq—c)(kq—l)‘li?zjm]z}gé.

Proof. This follows directly from Lemma 3.5 and the

inequality
j N _ 2 1/
[Af] < (Yp.q max]a,|?) 2”f|%

for all f € Hj.
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Let
hjcx) = (dist(r,o(L)))~! x
{12, L6 + y(dist(A,0(L)) sup| (A -e) (A -~ [)E/m21%
20 < d q
and

B = (z£=0 maxlazlz)yé.

Theorem 3.1. If A is an eigenvalue of L then either

(3.2) th(X) > 1
or X € o(L).

Procf. Suppose, for the sake of contradicticn, that

Shj(k) <1 and X € p(L). From Lemma 3.6 we have
i]RX(L)Aij < shj<x)ﬁfnj

for all £ G’Hj. This, together with th(l) < 1, 1implies
that (A-L) *A: Hj~—4>Hj has norm less than 1. Hence

IH: - (A-L)"!'A is invertible. Thus the restriction of this
J

operator to Vm will be one-to-one. Since

AI‘ - L = AI - L ~-A v

m

| -1
- Wi, - 1, - L7 A, 1]

m m m m
this implies that A - L is one-to-one and hence that A is
not an eigenvalue of L which contradicts the hypothesis.

This completes the proof.,
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Inequality (3.2) is the basic result of this section.

We will now show more explicitly what it implies about the

~

location of the eigenvalues of L. Let p be such that

: +
dist(A,0(L)),= IA—API. Let Ap be the next element in the

sequence {lp} to the right of A, if such an element

exists and let X; be the next element to the left if such

an element exists. With p chosen in this way (3.2)

implies
[A-2,1 <
(3.3) ,
3 y=11y2/mqy241
8 A= - - 1 21 V.
B{z£=0 [8 + v(| XPI supl()tq c)(kq A) l? 1%} 2(
1f
o -1 “» ) i Sy -1
(3.8)  sup [(Ag=e) A= =[O -e) (A -2)

this beccmes

‘ 1
3 Y
(3.5) IA-RPI < B{z£=0 [5 + YIAP‘CIZ/mJZ} 2

In case (3.4) is not satisfied we derive a different bound
for sup lqu_c)(Aq-k)“il‘ It is clearly sufficient to

consider those values of q which belcng to
= { A =-c| > |A_- .
A = Lal Iag-el > =}

Let B = {q | Ag < AP} and C = {q | x > Ap}. Suppose

qQ &€ AM B. Then

A=) g ] < agmeiag = Gpm /217

A study of the function |[x-c¢fjx - (Ap+x;)/2|‘1 for



15
X < (AP+A;)/2 shows that
A - A -Aa)? -x 1 A7)~}
| ¢ . ) (Ag=4) | < max(l,?(c A )(Ap AT
Similarly we find that
X -c)(h -a)"t < ma 2o ZFoy y-t
[ ¢ . e)( q )T < max(1,2¢( > c)( s A0
for g€ A C. Combining these estimates we obtain

(3.6) (ﬁax(l,ztc—x‘)cx A )Y
P P P

. + .
if kp does not exist,

| A

. . .
-1 | A - - -1
suplkq-c]]Aq_xl 1 { max(1,2(A -c) (A =2 )

if A; does not exist,

A AT 2 oyt )
max(2(c P)(Ap p) ’Z(AP.C)CAP Ap) )

. -+ )
if A and A both exist.
\_ P P

1]

g(p).

In the frequently occurring special case where

0 < Ai < Aé < ¢++ and c¢ > 0 this bound reduces to

/
max(l,Z(Az—c)(kz—Ki)_l, p =1,

; -1 -1
max(Z(c—kp_l)(Ap—A?_l) ,2(kp+l—c)(kp+l—K )7H),

P
L- p > 2.

- ‘ - - -1 ) 3 °‘
If ¢ =0 we have g(p) = 2xp+l<x 1 Xp) .  Combining (3.3)

P+
and (3.6) we get
Y,

=

3 . P L/m~3
(3.7) IA-APi < B{EK o [§ + Y(ll-Xp!g(p)) 1%}

We can solve (3.7) for lk—Api, i.e., (3.7) implies



16
[A-2 | < 1
P - P

where rp is the unique pcsitive solution of

k| 1

.ot o= g{} {6 + y(Tg(p))Z/mlz}/é.

£=0

Let
] " (12 .

(3.8?“ r, = max(B{Z£=O (s + Y]xp—cl /m]z}//,rp).
These results are summarized in

Theorem 5.2. If A is an eigenvalue of L then for

some Pp we have

A=A | < r_.
P - P

Thus we have shown that the eigenvalues of L are

» o2}

contained in LJ£=1 Cp> where
C, = Dr] Ia-a,] < x,b.

It will be usefui to have an explicit upper bocund for

T.. First suppocse
2g(p)B(S+y) < 1.
Then

j
(geN ™ > 8Ll, 6+ y<rg<p)>£fm]21 @ oy
T=(gip

which implies T, X (g(p))~'. Hence
1

o< B(d+y)(l+j)/é.
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Next suppcse
2g(pl)B(8+y) > 1.
In this case'we have " > (g(pN~! and hence

. 1
T, < 8+ gpn /MG 2

which implies

1/, . ' _
o © CBCs+y) (5+1) 7210/ (3D (50553 (0=3)

Combining these two estimates we get

(3.9)

; i "y e
LI max(B(é"'Y)(l'l'j)/2,[5(5+y)(j+l) e/ (m=3) (o pyi/ (m=3)y

Next we wish to count the number of eigenvalues of L
in each circle C£5 this result will be contained in Theorem

3.3. To this end we will need to consider the family of

operators
L, = L+ ta, 0 <t < 1.
Clearly L, =L and L, = L. If A is an eigenvalue cf
Lt’ the null spaces A - Ls (X—Lt)z,j°' form an increasing

sequence of linear manifolds. Theorem 3.1, applied to Lt’
shows that not all complex numbers are eigenvalues of Lt.
Thus for scme value of u, (u—-I_,t)"1 is compact. Hence

there is an integer o, called the ascent of A - Lt, such
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that (X—Lt)a and (A-Lt)cH'l have the same null space.

The dimension of the null space of -(A-pt)a is finite and
is called the algebraic multiplicity of A. As is well-
known , the algebraic multiplicity of an eigenvalue is at
least as great as its geometric multiplicity and‘the two are
equal if L, 'is self-adjcint. If T is a simple closed
rectifiable curve lying in p(Lt) and containing several
eigenvalues of Lt in its interior, the prcjection operator
associated with Lt and the part of the spectrum of Lt
within T is defined by

f
P(t) = =T jf Rk(Lt) dAa 3

this is a contour integral of the ocperator valued analytic
function RA(Lt) defined for A € p(Lt). The dimension of
ihe range of P(t) 1is equal to the number of eigenvalues
of L_ within ' counted according to algebraic
multiplicities; We will use this characterization of
algebraic multiplicity in the proctf cf Thecrem 5.3. A

discussicn of these ideas can be found in Taylor [301].

Lemma 3.7. Let S8 and T be two linear operators
defined on a linear manifcld of a Hilbert space. If

A€ p(S)M p(T), then

- _ ) ) . =1
a) RKCT) - RACD) = RX(S)(T—S)RA(S)[I + (S—T)RA(S)] s

b) Ry (T) = [I + Ry(8)(S-TI17'R,(8), and

&) Ry(T) - R,(S) R, (S)(T-8)R, (S)

+RRCS)(T—S)RX(S)(T-S)RA(S)[I+(S—T)RA(S)]d
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Proof. For A € p{S)M p(T) we have
(3.10) RA(T) - RA(S) = RA(S)(T-S)RA(T),

£ 4

A=-T

i

[1 + (S—T)RXCS)](A—S),

and

A=-T = (A-S)[I + RA(S)(S—T)],
and hence
(3.11) Ry(T) = R, (ST + (S-TIR,(8)]I7%,
and
(3.12) R,(T) = [I+ R (8)(S-T)]I7'R,(S).

Substitution of (3.11) into (3.10) gives (a), (3.12) is (b),

and substitution of (a) in (3.10) gives (c).

Lemma 3.6. Let B be a Banach space. Suppose S is
a bounded operator defined on B and suppose T 1is a
closed cperator with domain in B. If the domain of T

contains the range of S, +then TS is bounded.

Proof. TS 1is defined on all of B. Suppose X —X
and Tan*—*y, where convergence is with respect to the
norm in the Banach space. Since § is continuous we have
Sx —Sx. Since T is closed we have T(Sx) = y. This
shows that TS is closed. This, together with the fact
that TS 1is defined on all of B, shows that TS is

bounded.
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Lemma 3.9. Let P and Q be continuous not necessarily
orthogonal projecticns on a Hilbert space such that [[P-Q <
. |IP{I?. Then the dimension of the range of P 1is not greater

than the dimension-of the range of Q.

Prcof. Suppose the range.of P has larger dimension
than the range-of- Q.: Since.the dimension of the range of
PQ is less than or-equal.to the dimension.of the range of
Q we see that- the raﬁgeuof.wPQuAis.properly contained in the
range of:. P,  The range of P is closed since P 1is a
continuous projection and the range'of PQ 1is closed since
the range of Q and hence that of "PQ is finite dimensional.

Thus there is a unit vector f .in the range of P which is

orthogonal to the range of  PQ. In particular f 1is orthogonal

to PQf and hence

£ - PQEJ|*

1

1+ |IPQEj* 2 1.

‘Now f = Pf and hence f = P?*f. Thus

1 < |lp%f - PQr
= ||P(Pf - Q)|
< |lelHe - alls

which contradicts the hypothesis. This completes the proof.
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Theorem 3.3. Suppose q of the circles CK form a
connected set C which does not intersect any of the other

circles:

q
c = U C,
k=1 "k
Then, counting according to algebraic multiplicities, there

are q eigenvalues of L in C.
Proof. Consider the operator

Lt = L + #A

for 0 <t < 1. Theorem 3.2, applied to Lt instead of i,

shows that the eigenvalues of Lt are contained in the

circles
ct = ] [Aa-r,] < tr,}
2 ' A A
Here we have used the fact that if Tp . is the positive
solution of
k|
© o= e (I, [8 + y(ra(e) /M%)

p,t — P

then 1 < tt, if t < 1.
Let Ci be obtained from CZ by increasing the
k k .

radii of the circles by a number r which is so small that
q

& it o . .
c” = € does not intersect C, £ L ,+++,L . Ncw
Uk=l zk 32 ] 12 g
the number of eigenvalues of Lt in C*, counted according
to algebraic multiplicities, is equal to the dimension of

the range of the projection
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- 1
P(t) = 5T [3 *RX(Lt) dA.
c
For 0 £ t,t' <1 we have
- ! = l -

Using formula (a) of Lemma 3.7 we obtain
- = - . - =1
Rl(Lt)v' RA(Lt') RA(Lt)(t t‘)ARA(Lt)[I + (t t')ARA(Lt)] .

Since A: Hj-——*L2 is closed and the range of RA(Lt) is
contained in Hj we see, using Lemma 3.8, that A()\-Lt)'1
is bounded. Thus for t - t' sufficiently small

1 1 £3 : i
[|P(t) - PCEDY ]| < 5= length (3CT) ||Ry (L] [t-t" [[lAR, (L] x

(1 - lt—t'[HARA(Lt)H)'i,

where || * || denotes the operator norm associated with the

L, norm. This inequality shows that P(t) is continuous

in t with respect to the operator norm.

The continuity of P(t) together with Lemma 3.9 shows
that the dimensicn of the range of P(t) is continuocus in
t. Since the dimension is an integer we see that the
dimension of the range of P(t) is constant. Hence the

~
&

number of eigenvalues of L = L, in-C is equal to the ,

. % . .
in C°. Since L 1is

number of eigenvalues of L L

0
self-adjoint it has gq eigenvalues in c*. Thus, since
r 1s arbitrary, we have shown that there are q eigenvalues

~ o, %
of L in C .
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m ~
Corollary 1. If [ C, is not connected, then L
k=1

has at least one eigenvalue.

Proof. In this situation there will be an integer p

such that C UJ +-* L)Cp is a connected set not intersecting

any of the cther circles. Theorem 3.3 applied to this set

gives the result.

Corollary 2. If i and the boundary operators Uk

have real coefficients and the circle C2 does not intersect
)

the other circles, then the eigenvalue of L in CK is
0

real.
Proof. By Theorem 3.3 there is exactly one eigenvalue
of L “in Cp - If this eigenvalue is not real then its
g
complex conjugate will also be an eigenvalue of L, will be
in Cz , and will be different from it. This contradicts
0

the fact that there is only one eigenvalue in Cﬂ .
%o



§4. Improvable Approximations to the Tnitial Eigenvalues

of L.

Let Sn = span(xl,--',xn) where X, ,°"*,x ~ are the
first n eigenvectors of L. For any operator B whose

domain contains S define B = (P B) where P is
n n n Sn n

the projection ontc Sn. We now give several results

which parallel the results of Section 3.
Lemma 4.1. If A E'p(Ln) and f € Sn, then
IRA(Ln)flo < Iflo(dist(A,G(Ln)))".
Prcof. The proof here is similar to that of Lemma 3.1.
Lemma 4.2. If X € p(Ln) and f € Sn, then
IRy (L DE]_ < max I(Ak—c)(kk—k)‘lllflo.
1<k<n

Proof. TFor X € p(Ln) and f € Sn we have

f = (AL )(A-L O)7'f
n n

= AL - i®a-L ) te1(m L gea-n )TlE,
n n ol

and hence

2 n ’ o
IR, (L DE] Zk=l [ (A=) (A =) 1 (F,%, ) |2

2
0°

| A

max | (A -e) (A -2)"1] | £]
k
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Lemma 4.3. If A €& p(Ln) and k = 0,1,*++,m, then
[RA(Ln)f]k‘ < £l distr,o(L )7 x
[8 + Y(dist(,0(L ) max [(A -e) (A =07 [)E/™]
1<q<n q

for all f € Sn'

Proof. This follows immediately from Lemmas 3.3, 4.1, and

I&Oz.
Lemma #.4. If A Elp(Ln) and k =0,1,***,m, then

IERA(Ln)fHk < |f|0<dist(x,c(Ln)))‘1 x

‘ 1
{zk [8+y(dist(r,0(L )) maxi(kq-c)(k )'ll)z/mlz}/é.
£=O l<q<n -

Proof. This follows directly from Lemma U4.3.
Lemma 4.5. If A Elp(Ln) and f &€ Sn’ then
3 N £ . L
HRA(LR)Aanj < (Z£=O maxja,|?) Hf”.(dlst(X,c(Ln))) x
3 -1 y£/m~q2
{} [8+y(dist(A,0(L_)) max [(A =) (A -1) D ] }
£=0 n 1<q<n q

where J 1is the order of A.

Proof. The proof is essentially the same as that of Lemma

fa
~
b=
N~
1

(dist(x,o(Ln)))'l x

Y
{22_ [8+y(aist(A,0(L )) maxl(x -c)(k A)“I)K/mlz} ?

= 1<q<n
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Theorem 4.1. If A 1is an eigenvalue of in then

either

Bh, _(X)

{v
[a]

Ej

or X € o(L ).
n

EEQQET Suppose X € p(Ln) and‘ th’n(l) < 1. This,
together with Lemma 4.5, implies that (X-Ln)'ﬂAn, considered
as an operator on Sn with the Jj norm, has norm less than
one. As in the prcof of Theorem 3.1 this implies that A 1is

-~

not an eigenvalue of Ln which is a contradiction.

Using the same reasoning which led to Theorem 3.2 we

obtain

-

Theorem 4.2. If XA 1is an eigenvalue of in then

for some p satisfying 1 <p £n we have

A - ABos r-

...,C

Theorem 4.3. Suppose q of the circles C,, n

form a connected set C not intersecting the rest of the
circles. Then, counting according to algebraic

~

‘multiplicities, there are q eigenvalues of Ln in C.

Proof. The concept of algebraic multiplicity is
defined in this finite dimensional context just as in Section
3. The continuity argument used in the proof of Theorem 3.3

now applies here and gives the desired vesult.
-]
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For the remainder of the paper we assume the circles

CK are mutually disjoint: Theorems 3.2 and 3.3 then

~

assert that L has a countable set of eigenvalues which
are contained in the circles Cﬁ, one eigenvalue to each
circle; denote the one in C, by~ Mp- Also, for n
fixed, Theorem 4.3 asserts that the eigenvalues of _iﬁ
are ¢ontained in the circles Cz””’én’ one eigenvalue

to each circle; dencte the one in C£ by nﬂ(n). The

eigenvalues nl(n),°°°,nn(n) will be called the nth

stage Galerkin eigenvalues of L.

We now derive estimates on the error which arises when

np(n), the pth of the nth stage Galerkin eigenvalues

of i, is used as an approximation for Moo the pth

eigenvalue of i, p=1,***,n. Let yp be a unit
" eigenvector of L corresponding to up and let: yp be

orthogonaliy decomposed as follows: y_ = yp(n) + wp(n),

P
1 . ,
yphﬂ € Sy» wp(n)EE S, Let z,(n) be a unit eigenvector

~

of Ln corresponding to nk(n). The vectors zl(n),"-,zn(n)

span Sn.

Lemma 4.6. Let a l(n),”', (n) Dbe the coefficients

P
in the expansion of yp(n) in the basis zl(n),"-,zn(n).

o
P,

Then
n 2 7
lz£=l ap,ﬂ(n)zz(n)lo = (1 = IwP<n)l0) ,

and

17

1 qp’e(n)(up-nz(n))ZECn)Jo = IPnAwp(n)lo.
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Proof. The first result follows from

n

yp(n) = Z£=1 ap;z(n)zz(n),

and
- 2 . 12 2
1 = ]yplo = lyp(n)l0 + pr(n)lo.

The second is a consequence of

n ~
Z£=1 ap,z(n)(up—nz(n))zz(n) = upyp(n) - Lnyp(n) |

upyp(n) - PnL(yp—wp(n))

- P + P +
upyp(n) up nyp n(L A)wp(n)

P Aw_(n).
n p

Lemma 4.7. Let 51,"',€n be a basis for an n-
n

dimensional inner product space. Let ¢ = Z£=1 nge.
Then

n . n
mEyaemnt) I el < lelf < MCE, e mngy) L, 1l

where _M(€1,°",£n) and m(El,"',En) are respectively the
greatest and least eigenvalues of the Gram matrix ((Sk,EZ)).

n -
Proof. We have. Nzll2 = (z,0) = zk,£=l T Tp(Eps€p)e

Now ((g,,£,)) 1is a Hermitian matrix and thus ]2 is a
Hermitian form in (?1,-'~,?n). The result follows from the
fact that the value of a Hermitian form lies between the

least eigenvalue of its matrix times the square of the

Euclidean length of the vector and the greatest eigenvalue
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of its matrix times the square of the Euclidean length of

the vector.

Lemma 4.8.

-

1 - lwp(n)li < M(z,(n),e+,z (n)) ZZ=1 [ap,z(n)fz,

and

m(zl(n5,"',zn(n)) 22=1 |ap,£(n7(up-n£(n))i2 < ]PnAwP(n)lj.
Proof. This follows directly from Lemmas 4.6 and 4.7.

Theorem 4.4. For some £, say Zo, where 1 < Ko < n,

we have
(4.1) )

1
|up—n£o(n)| < (M(zl(n),"',zn(n))/m(zl(n),.“‘,zn(n)))/2 x

. : 2 —V2

IPnAwp(n)[n(l - pr(n)ia) .
Proof. We write Mn and m for M(zl(n),'°',zn(n))

and m(z,(n),*+*,z (n)) for the remainder of the paper.

Suppose

P . 2 — Y%
[upmnp(md [ > O /m > T[P Aw ()| (1 - [w (m)[) 7,

£ = 1,+*+,n. Then using the first inequality in Lemma 4.8 we

have
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n
- 2
m J Iamz(n)(up nﬂ(n))l

n =1

- o

2 _
> M [P Aw ()] (1 - |wp<n.>l§) Lpen lap,z(n)lz

; 2
> |Ppaw ()]

which contradicts the second inequality in Lemma 4.8. Hence

we get the desired result.

Theorem L.4 provides the basic estimate for
lup—n (n)|. In the remainder of this section we will first
diséuss the convergence to zero of the right hand side of
(4.1) and then derive computable bounds for lwp(n)l0 and

o

|PnAwp(n)[a. Since wp(n) =) (yp,xz)oxﬂ we see that

L=n+1

lim [w_(n)|, =0 for p fixed. We prove that

n-re P

lim [PnAwp(n)la = 0 with the help of the following lemma,.
n>w .

whose proof can be found in Agmon [2].

Lemma 4.9. There is a constant K which depends on

a,b,myL, and A such that
|af], < x(|Lf]  + [£] )
for all f € H_.
Using this lemma we can write

[PnAwp(n)I0 < lAwp(n)l0

< K({pr(n)lo + ]wp(n)lo).
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This, together with
= ) A
pr(n) Z£=n+l FASAST IR
shows that 1lim !PnAwP(n)lo @ 0 for p fixed. Thus the
n->oe :
right side of (4.1) converges to zero as n—» for p
fixed provided Mn/mn is bounded in n. In Section 6 we

give sufficient conditions for Mn/mn to be bounded.

Y2
Remark. The factor (Mn/mn) is present in inequality
(4.1) because we are estimating the change in the eigenvalues
when the (possibly) non self-adjoint operator in is

~ if
perturbed to obtain L. (Mn/mn)/

equals 1 if and only if T,

n
is normal. This factor alsoc arises in a fundamental result
on the[perturbation of eigenvalues of diagonalizable matrices;

see Bauer and Fike [6].

Computable bounds on [wp(n)]0 and lAwp(n)[D will

now be developed.

Lemma #.16. If n > p, then

. _ -1
iwp(n)[0 < 'Aypff’(z?ﬂl iup Apl)h.

Proof. Since

oo

w_(n) = (vy_,%,) %
P z£=n+1 p’7L0 L

we have

o

Z i(yp :xﬂ)o

lw_(n)|?
P o £=n+1

l 2

< ( min Ju_-A,|)7? [ (v %), (u_=2,0]%.
= eon+r P % z£=n+1 pPiLe T p L



Now

(up")\z)(ypgxle’)o = (Upyp,xz)o - (yP,A£X£)O

R4

(Lyp,xle)o - (yp,LX£)0

= (Ayp,X'@)o\
and hence
[ » . \
Z£=l l(Yp,x!_)o(up-)\K)] < z!,=1 |(Ayp,x£)0|
- 2
= lay,l;-
Lemma H4.11.
(4.2) |Ay_| < Zj max|a,|[8+y(|u_-c| + |Ay_] )Z/m]

Proof. Using Lemma 3.3 we have

k|
ly 5 (g maley byl
3 £ £
2£=0 max[azl(Ylyplo mlyplﬁ + Siyplﬁ)

A

J i L/m
Do maxlagl (rlLy,mcs, 17 + o)

£/m +

_ 7] ~ ,
= 2£=0 max|a,| (v|Ly -ay -cy_| 8)

L/mq,

A

3
2£=0 maxla£|[5+Y(]Up—Cl + IAYPIO)

We can solve (4.2) for lAyplo, i.e., (4.2) implies

lay, 1, = 1,

where t, 1is the unique positive solution of"

32



k|
t = Zz

=0

maxlazl[é + y(]up-cl + t)

C/mJ.

Lemmas 4.10 and 4.1l provide a computable bound for

lwp(n)lo since we have a preliminary bound on lupl.

We now assume

m 1is even (let wu =

m/2)

and that the

33

boundary conditions are of Sturm type, i.e., are of the form’

a,,f(a)

a?of(a)

auof(a)

+

+

+.

+

o f(l)(a) + e + g

11

o, £ ) + .-

(1) cee
au1f (a) +

g, £ ) + .-

< K < K <

u u-1

< k! <
- M

¢

o

B

B8

(k. -1)
1,K1-1f 1 (a)

(k,-1)
2,K2—1f 2 (a)
(ky-1)
f U (a)
U,Kn 1
£ o)

1
sKy

' o £ T ()
>y

+

-+

+

4

<

£ ()

f(Kz)(a)

£ ¢y

£ (1)

£ 60D (py

m"l’

m-1.

Birkhoff [10] and Tamarkin [29] obtained asymptotic

§]

formulas for the eigenvalues of a wide class of differential;

operators and boundary conditions. Under the assumption
that the boundary conditions are of Sturm type, they imply

that the eigenvalues of

(-1)He2W AT,

o
-
~
1

l,..',m
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are bounded below. This implies that ¢ can be. chosen such
that L is positive definite; we assume for the rest of this
section that ¢ 1is so chosen. There is further explanation:
and additiomal applications of these asymptotic formulas in
Section 6. For a complete discussion of these formulas see
Naimark [2217. |

A proof of the following lemma can Be found in Chapter

XIX of Dunford and Schwartz f13].

Lemma &%.12. If k = l,**¢,m-1l, then the domain of Lk/m

k/m

is contained in Hk where L denotes the k/m power of

L.

Lemma 4.13. There is a constant K which is independent

of n /such that

' (3-m)/m
lAwp(r'l)l0 < Klup-xn+l|

for n > p.

Proof. From Lemma 4.12 we see that Hj contains the domain
of Lj/m. Hence, using Lemma 3.8, we see that AL'j/m is

bounded as an operator on L,. Thus

11}

(4.3) |Af], !AL'j/ij/mf!O

a3/ Ll me )

A

for all f in the domain of Lj/m; in particular this holds

for all f € Vm and we have

law ()], < an™ L M ]
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Now
€13 ) x, = A3 (),
. 0, k < n,
}i/m(y 5xk)°, k >n,
and

(up-_)\k)(yp,xk)o = (Ayp,xk)0
and hence
1L3/my (|2 = zm lzj/m](A ) (u_=A, )"} 2
Wp'hllg = k=n+1 Kk Yoo Xk’ o ‘Hp~ Mk |
| _y |~1y2i/m - 2(j-m) /m | P2
/ = fk§i§1<Aklup A dTH Hug=A g4 lay 1, -

Thus
IAWP(n) l, <

=iimy ‘ - ~1y3/m i - (j-n)/m
| AL H{k§§§l<kklup M T HAY T T4 ] .
Under the assumption that Jj < u we_pr»esen't an

additional estimate for IAwp(n)la which is in some cases

more readily computed than the bound given in Lemma 4.13.

Lemma. #.1%. There are constants c¢, > 0, ¢, > 0 which

depend on &, b, m, L, and the boundary conditions such that
2 2
(.4) }]fﬂu < e (LE B+ e [f]]

for all f & Vm.
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Inequality (4.4) for functions which vanish near a and
b is Gadrding's inequality. Our concern here is to prove it
for functions in Vm and to show how the constants can be

calculated. This is done in Section 5.

F]

Lemma 4.15. If Jj < m/2, then

vz -
[Awp(n)l0 < B{kgiﬁl(clkk+cz) Iup—kk{ }[Ayplc-

Proof. Using Lemma 4.14 we have

|~

(4.5) |af]? B2lc (LE,£), + ¢, [£][)]

Yo 2 2
2
B2lc L £+ c |£]}1

for any f € V_. If we now estimate IAwp(n)la, ‘using (4.5)
instead of (4.3) we obtain

o

o Y
law ()], < ei] ~1(c1xk+c2)lcup-xk)—i(Ayp,xk)nlz}

k=n+

A

. Yy _y i-t
B{kfiil(clkk+c2) lup A | }]Ayp]ﬂ.

Theorem 4.4 and Lemmas 4.10, 4.11, 4.13 and 4.15 give an
explicit estimate for ]up-nﬁ (n)] since M /m_ can be
calculated. In many cases weacan conclude that £, = p “and
hence we have an estimate for lup-np(n)l for any n > p.
See Section 7 for an explanation of the use of these

inequalities in numerical computation.
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§5, Proof of Lemma 4.14.

In this section we assume that m is even, the boundary
conditions are of Sturm type, and Jj < m/2. We do not assume

that < ib chosen such that L is positive definite.

Lemma 5.1. Suppose 1 < i < 2u-1, 0 <k < u-1 and
neither i nor k 1is equal to Kp for any £. Let D be
any constant. Then there exists a family of functions

£ (x), 0 <e <1, such that

1) £ €V for all e,
£ m

-
2) 1, p =k
fép)(a) = < Det, p =1
0, p # iakaKia"'aKu

3) fép)(b) = 0 for all p,

) iféia and |f are bounded in €.

elu

Proof. For 0 < p < 2u-1 define fp(x) = (x-a)P/p1.
Let Wx) be an infinitely differentiable function

satisfying 0 < Y(x) <1, Wx) =1 if x < a + (b-a)/3,

and ¥(x) = 0 if x > (a+b)/2. For U < q < 2u-1 define
. Xq ’ X3 _ -2 -1
gq,equ) = 5 s (J DY(a + (xa-a)e Je dxo) so dxq.
a a
Then
~
. 1, qQ = DPo»
f§Q)(a) =
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and
7
JDs“l, D = q,
gép;(a) = . :
? -10, P % q..
Also

\ ) b 1 _
Igépélo < |D|[[ Y2(x) dx] “(b-a)¥ P if 0 <e <1, p < .

a
. K;)
The boundary conditions at a can be solved for £ (a),
(ky) . (p)
see " (a) in terms of f(p)(a), p # Kys® ook e
(kp) Ke~l - ,,
£ ) = Zp=0 czpfcp)(a),

p#Ku’.."K£+l
where the coefficients Cﬁp depend only on the boundary

conditions. If k < Kp < i define

h (x) = ¢, . f (x);
Kp Lk Kp

if 1 < Kp define

he (x) = cp f (x) 7 czing’e(x?.

Now let

£ (x) = T(x){gi’a(x) TOE(x) 4 EK£>k hKZ(x)}.

f. clearly satisfies conditions 1-4.

The following two lemmas are proved in Agmon [2]. Lemma

5.3 is closely related to Lemma 3.3.
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Lemma 5.2. (Scbolev) There is a constant Yy depending

only on a, b, and £ such that

(L- 3-1)

£® ol < w2 sl 2 el

for all fE€Hy, 0<r<1l, k=0,""+,2-1, a<7T<b.

Lemma 5.3. There is a constant Yy depending only on

a, b, and £ such that
h ]
2 -k 2
£] 2]

x f

< Y(rz_klflz + )

for all £ G’HK, 0 <r <1, k=20,*,¢-1.

If f €& Vm, then repeated integration by parts gives

(5.1) . (Lf,f)

. (-DMePWicr )

. .
1£]12 + clg]® + -D* T -1¥f
L 0 k=0

Since the eigenvalueé cf L are bounded below we have
2
(LE,£), > x]flo

for all f E.Vm where A 1s the least eigenvalue of L.
Using this and (5.1) we obtain
' IS ko (2u-1-K)5 () | ° 2 2
(5.2) (-1) 2k=0 (-1)°f f < g7+ Ce=2]£]
a H

for f € V . As indicated in the proof of Lemma 5.1 the

(K ) :
boundary conditions at- a can be solved for f 2’ (ay:

(x,) K,—-1
£ £ ya

= 3 (p)
(a) = 7} o cppf (ad
K
u

o]
'O

s 00
3 ’K

£+1

(2u-1-1) (k) |

-a
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Similarly the boundary conditions at b can be solved for

f(Kl)(bh

(x!) Kp-1
£ 0w = 1L ey £
u-1 L
Let S(x) = (-1)¥ le=0 CLEEHIR ) FE) (%), In terms of

S 1inequality (5.2) is

(5.3) -S(b) + s€a) < |f]2 + (-1},

If in S(a) we substitute the above expression for
(k,)
£ £ (a), £ = 1,¢+°,u-1, we will get terms of the form

a.. £y T® (a)

ik
‘where ‘0 < i < 2u-1, 0 <k < p-1, itk < 2p-1, and neither
i nor k 1is equal to Kp for any £. Likewise for S(b)

we get terms of the form

as, £ (py TE) (py

where 0 < i < 2u-1, 0 <k < p-1, itk < 2u-1, and neither
i nor k 1is equal to Kk for any £. Let 1, k be fixed
with 1 > u. Now let f_ be the family of functions shown

to exist in Lemma 5.1 where D = dik' For these functions

(5.3) reduces to

l 2

2 -1
Idikl € = !fe u

ECEVIE S

Since lfslu and |f_|, are bounded in & we see that
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dyy = 0. Similarly di, =0 if 1 > p. Hence (5.1)

becomes

(5.4) (Lf,f), |£]2 + cl£]2 + S(b) - S(a)

2 2 (1) =(k)
|f|u toelf|? + ) . d}, T ME ()

-3 a, £ @F® @)

0<i,k<p-1 X
i,k#K,, Z=1,2+,u

and thus
(LE,E) > [£12 + elf]2 - ] Jag | £ @] [T m
-3 lagl 1EP @l [P @],
Using Lemma 5.2 with £ - U we have
D@l < oy 2, e el

1
Y, F-u
MEIS LI E]

In

s)s 0 <1 <u-l.

Using this and a similar estimate for Ifcl)(b)l we obtain

1
Y, 7 H »
Ilag v ™™gl + 2% [f] D7

(LE,£), > Ifié + o f]?

. 1
Vs 7~ M
- 1 ldg Iv?(e lflu +r [£],0?

v

[£12 + cl£]2 - 2v2col£]2 + 27 gD

+

.(2 Idijl + z ldij|)
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= 1£1300 - 2v3e(] fagl o+ fag gD
2 bu2.1-2u
+ |[£]2{c - 2y?r () ]dijl + 3 Idijl)}
1 ~
= 3 €12+ &g

for r <chosen appropriately. Finally, using Lemma 5.3 we have

1 2 1 M7 2 4 ez
Lf,8) > FIEIE - 5 1o €15 * clfl}

1 1 u-1 4 -1 -
2 IENS - 5 Tiog v™77 JEIE + 2702l + B2

1 u-1 s . - -1 -1
E N SRR A O VU L B £ A EI RS CREIR D A
- 1 u—l u_i ) ~ u—l )
= lEl2tg - ¥ (G POy fel2G@ - 3T 0D

Now by choosing r appropriately we arrive at Lemma 4.1k,

Remarks. 1. The constants ¢, and ¢, in Lemma 4.1y
are computable assuming the constants in Lemmas 5.2 and 5.3
are ccmputable. See Section 7, especially Example 7.4, for

further comments on finding explicit values for these

constants.

2. Let m =2 and write the boundary conditions as

o fla) + uif(l)(a) 0,

i
o
L]

B, £(b) + 61f<1)(b)

Then, if aa <0 and 8081 >0, (5.4) implies

(L£,£) | > [£]2 + ;]flz.

Hence in this case we obtain (uau) with c, = 1 and

c, = max(0,1-c).
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§6. Proof that M /m _ is bounded.

We return here to the problem mentioned in Section 4

of showing that

F}

M(z (n),***,z (n))/m(z (n),*+*,z2_(n))
1 n 1 n

is bounded in n. For the vemainder of this section assume
that m = 2u is even, the boundary conditions are of Sturm

type, L 1is positive definite, and the circles
cp, = (n ] Ia-a,l < pyd

are mutually disjoint. We also assume that Jj, the order of
A, is less than or equal to m-2. Let dﬂ = min’[kk-kﬂf.
k#L

o

Le 6.1. ) (AL/d )2 <o if 0 <y < 1 -
emma 6.1. o/ v -

Proof. Under thez assumptions of this section the
asymptotic formula for the eigenvalues of L which was
mentioned in Section 4 is as follows. There is an integer
p and a constant o such that
(6.1) A, = [(Alk=p) m{l ¢+ 24 ol

: k b-a k K2
for all k. An immediate consequence of this is an

asymptotic formula for dk:

- T \® m-1 1
(6.2) dk = (E:—g) (k-P) {l + O(}—(_)}'

Hence



2m(v-1)
2V, 22 _ m 2(1+mv-m)
and the result follows.

Lemma 6.2. For sufficiently large £, say £ > Z,

ry < d£/3.

Proof. It follows from (3.6), (3.8), (3.9) and (6.1)

that

IA
oy
oS

[N

i* 2

o
v
o

A ]

e
and from (6.2) that

dp/3 > A", d > o.

7

The result now follcws from the fact that J < m-1.

Lemma 6.3. Let ¢1,"',¢n be any orthonormal basis
for S_ = span(x_,***,x ) and let T: S ——S be the
n 1 n n n

linear operator defined by

T¢k = zk(n), k = 1,**,n.
Then
Y, ,,
- -1
o m ™ = i)
where || * || denotes the operator norm which is associated

with the inner product on Sn which 1s induced by the L,

inner product.
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Proof. ||T]|* is equal to the largest eigenvalue of
T*T and the matrix of T*T with respect to ¢1,~~~,¢n is
the transpose of the Gram matrix ((zk(n),zz(n))o). Hence

IT||* = M_ . Similar reasoning shows that lT-2]* = m .

in is a diagonalizable operator on S_. Let

Q?,--°,Q§ be the projections associated with in and let

I, = {1,2,***,n}. The following lemma is due to Lorch [21].

Lemma 6.4. [T T | < 4{max ||} Qﬁ”}z.
: ICI kel

Combining Lemmas 6.3 and 6.4 we see that

Yo e n
(6.3) (M_/m_) < u4{max ||} Q. |Ir2.
non - IcI “ker K
Let PT,°--,P§ be the projections associated with Ln.
Then
’ A n : n n .
. = P+ - P
G NIT_, el = IY PRI cf - EDI

A

RS DR el

since the PE are orthogonal. Let T, = {A ] IA—AKI < d,/3}.

Using Lemma 6.2 and formula (c) of Lemma 3.7.we have

n n _ 1 >
(6.5) QF - P} = - f IRy (D) - Ry (L )T dA
5T
K
= i R, (L_)A R.(L_) di
2Tl Bfkknn)\n
1 ' ; -1
b ot far R, (L_)A_R, (L DA R, (L )[T-A R, (L )17 dA

k



if- k > Zl. We now estimate the second term in the right

side of (6.5).

Lemma 6.5. If A € p(Ln), then

-

AR, Ll < Jan®™™ /) ey Aém‘z)/mlx-xk[‘l.

k=1,*+,n

Proof. From Lemma 4.12 we see that the range of

(2-m) /m
L : 2

is contained in H_ _, and hence it follows from

46

Lemma 3.8 that AL(?2™™/® g pounded. It follows directly

from the definition of a power of an operator that

L§2-m)/m - (L(Z-m)/m)n. Using this we find that

a p{2-m/me o p p(27m)/mg
nn . n
for all f € S, and hence that
2— . _ .
la L™ /m < jjanEm iy
For any f € Sm
n

(m=2)/m -
Eksl (£,%,) A (A=A, )7 'x

H

{(m-2)/m
and hence

2

- 2 -7 '
IlLim 2)/mRA(Ln)f”o zn XZ(m 2)/mlk"kklnzl(f=x

k=l Kk k)ol

< max A P WA R
Thus
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Combining these estimates we have

1

(2-m)/m; (m~2) /m
la L, L™ Ry (L) |

A R, (L )|

la Lim /w2 /mg (g, )

A

A

IIAL(Z_m)/mH max Aém_z)/m,k—lkl‘l.
e
Lemma 6.6. If 0 < v <1l and X & BPK then

Vg -1 : vV
k=1m??. n Al A=ny | < max(3, 312(2x1)xz/d£.

Proof. If k # £, then

Vv -
A lA=a |71

A

Aﬁfkk—le-lyl A_Azj»lxk_le -t

tA

v -
(3/2)A) [ A =2, |7

(372) | A=2, VT / (A=, )
ke L I 4

' v-1 v
(372 [ A =2, [ 7771+ Ap/ A =2, D

I A

in

v
(3/2)(Xp*d,)~/d,.
x for k > 2 we have

(Aﬂ + dz)v < max(Z,Aé/Al)Az.

v - Y
Ak]A—Ak. o< omax(2,),/X )),/4,

if k # £. 1In the case k = £ we have



48

v -1 V .
Xklk—kkl 3 lz/dz.

These two estimates give the result.
Lemma 6.7. There is an integer n, such that

1 —
Py [ar Ry (L DA R (L DA Ry(L LI - A R, (L )I7'dA||
£z
2 “AL(2-m)/m“2 max (3, 3A2/2k1)2(lém-2)/m/d£)2

for £ > n,.
Proof. Let
d = max(3, 3%2/2A1).

Suppose A € Tz. Lemmas 6.5 and 6.6 imply

(2~m)/m

“dxém—Z)/m

(6.6) AR, (L]l < JIAL /d,

if £ > £,.- Let n, be an integer such that n, > £, and

AL ™ mjarm=2 /mya < 172

if £>n,. Thenif £ >n,, I -AR,(L) is invertible

and
¢6.7) ||[I - A R(L DI < - JARQ@HID™Y < 2.

Now, using (6.6), (6.7) and the fact that ”RA(Ln)” = 3/d,,

we find



IRy (L DA Ry (L DA Ry (L HIT - A R, (L DI 71|
< Ry @O ARy O JP)IET - A Ry (L )17
< (G/dz)”AL(z-m)/mﬂzdzkz(m-z)/m
if-n >mn,.
Next we consider the problem of estimating
'IzkeI'E%f [r Ry (L_)A_R, (L ) dAll,

where I(C I . Let 1 <k <n and consider the Laurent

expansion of RA(Ln) about Ak:

® k 2
Ry(Ly) = Dpaiw Bp(A-2)7, A ET,,
where
k _ 1 -£2-1
I‘k

Since L dis compact X is a pole of RX(Ln)' The
order of A, as a pole of Ry(L)) is equal to the
ascent of lk - Ln and since kk has algebraic
multiplicity one we see that Ak is a simple pole. Thus

the expansion has the form

= k -1 k
Ry(L) = BS -2+ BY + BOL,
where B(A) = [, BsO-1)% Now BY = PP, the k2

projection associated with L.. Also

kK _ 1 -1
B, = & [F Ry (L) (A=2,)7" dA.

k

49



Now

- n n -2 k n -1
RA(Ln>AnRA(An) = PkAnPk(X—Xk) + BoAnPk(k—Ak)
+ ey -1 n k_ -1
, B(X)AnPk(k Ak) + PkAnBO(A Ak)
k k - .k n -1
+ BoAnBo + B()\)AnB0 + PkAnB(k)(A—Ak)
+ BXA B(A) + B(MA_B(MD)
0 n n
for X € Tk and hence, since
f (A-2 )72 dx = 0,
r
k
f (x-xk)'l dx = 2mi,
1-!k
f B(O) (A=A )7h dx = 27mi B(A,) = 0,
I‘k,
f dx = 0,
Fk
[ B(X) dA\,
and I‘k '
f B2(X) dx = 0,
I‘k
1 - k n n k
T [P RX(Ln)AnRX(Ln) dx = BoAnPk + PkAnBo'
k
Using this formula we obtain
1
(6.8) sz VEES ] Ry (L DA R, (L ) drl|
. el Fk
" k n n k
< It Ba P+ [T PLA B/
—_ ke ° B k kel kK'n"o
Now, since
R(L) = §° (A=A )"'PR
At Tn - k=1 k ’

and
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0, L =k
1 -1 -1 -
VESH Ir (A-xz) (A—Xk) dx = % ,
"k (A =2p)7, 2 #k
. ~
we get
k _ n n 1 -1
B, = }:£=1 Pp 5o Jr (A=2,) (A=2, )71 da
k
- n -1
= X£=1 Che=rg) 7 Py
L2#k
For x € S_ we have
PEX = (X’Xk%xk’
n —
A Ppx = (x,xk)oPnAxk
= (%,%,) Zq . (Axy>x )% s
and hence
- {'n -1 n
BoAnPk L -1 (X Al) PﬂAnPkX
24k
_ ©n -1 ,
= X£=1 (A —AKJ P (x, X, z ) (Axk,xq)ﬁxq
£#k
- o -1
= 2£=1 =2 p) TR, %y ) (AR X p) % 5
L#k
and thus
- -1
HZMI BoAnkaHo = HZkGI (x,%, ), zﬂ . (A =2p) THAR, %)%, ||,

#k
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n -1
< zkEI ”2£=1 (A =2p) (AXk’XK%XKHOI(X’Xk%[
#k
n . - 2472 Y2
< [2k€1|122=1 (hg=2p) I(Axk,xﬂ%xzno] [2keI |(x,xk%|2]
; x
= I3 T [ iax, Lx,0 ]2 2 ] .
keI £=1 k *e k IEG 0
- #k
Hence
6.9) lII  Ba o]
ker ° 0 0
< 1 I0 O Maxg x| 217
- kel £=1 ¢
#k
- - V2
= 1 2 AL e m=2) m Ly (x0T 2]
#k
1
. B e mey ) ran2Tm™ By yy 217
zkex £=1 e k7L o
#k
(n-2)/m _ —1(2¢n (2-m)/m 2 Yo
< L £‘=1If1?}f.,n-“k rp ML AL x> %p) 7]
#k #k
(m-2)/m - (2-m)/m 24 Y2
< [ max | A (A -2,) " 1|2 ||AL %, |11
S N R L 2

- _ - 1
”AL(Z m)/mH [zkEI %::lkém 2)/m(kk"xz)~llz]‘k

A

I A

faL (2™ /my EEk . (xém'z)/m/dk)zjyz
e

< Jan@ ™ imppy e imog g2,
k=1
Similarly we find that

- n Yy -1 '
#k

n
k''n
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for x € Sn and thus

I3, PhA Bexll,

kel
- n -1
= ”ziez zz=1 (x,%p) (A= p) (sz,xk)oxkﬂo
#k
- n —-i
= ”Z£=l (ZkEI (sz,xk%(kk-kz) xk)(x,xz%ﬂo
#L
. a _
< Z£=1 NZkEI (A%, (=2 g) x| (x|
#2
- Ya
< [y (Ax ,,%, ) (A =2,) "%, ||2T" (x,%,)]2]
- £=1 keIl L7k Tk L k,°z£=1 | ﬂo,
#L
y _ Y2
< [ZLl ZkeI [Cax gm0 A2 p) 7121 7 x]
#L
Hence | ‘
(6.10)
n k n -1i2 '1/2
HZkeI PAB Il < [Zzﬂ zkel | (Axp,x, ) (A2 p) T[]
#L
.- - _ 1‘
N Al I L Py R W S
£=1 kel
#4L

=1

Combining (6.8 (6.9) and (6.10) gives
Lemma 6.8. TFor any n. and any I'C:In,
] R, (LA R,(L_) dx

szel 271 grk ATTn " nTA "n I

_<. 2 ”AL(Z*m)/m” [z (}\lgm'Z)/m/dk)zjl/Z‘
k=1



The method used to prove Lemmas 6.7 and 6.8 is
an adaptation of a method used by Kramer [20] to prove a

result on perturbation of spectral operators.

r

Lemma 6.9. Let k be fixed. Then HQEH is bounded

in n for n > k.

Proof. Using Lemma 3.5 we find that

HRA(Ln)Aanj HRX(L)Aanj

| A

hj(x)lAnfl0

I A

th(A)Hij

for f € Sn. Let Ci be obtained from C, Dby increasing
the radius by such an amount that Ci does not intersect

‘Cpy L# k. If L E 5Cy, then
th(l) < 1.

Thus R)\(Ln)An considered as an operator on Sn with the
j norm has norm less than one. From this it follows that

I - Rx(Ln)An is invertible and
“(6.11) ][I - RA(Ln)An]'Ifuj < - th(k))°1]lfﬂj.
Another application of Lemma 3.5 gives

(6.12) !lthLn)ij < shj(x)]flo.

54
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From (6.11) and (6.12) together with formula (b) of Lemma

3.7 we obtain

IR @l < MRy Eelly

IET - Ry (L DA TRy (L £l

-1
< (1 - thu)) ”RX(Ln)ij

-1
< (- Bn (1) th(x)lfl0
for fES_, A€ a'ci. Hence
n _ ~
IR = figd: fac* R, (L) arll

k

A

< Radius (3C}) max B(1 - Bh ()7 (M),
y redck

which shows that “QE” is bounded in n.

Now f;om (6.3) and (6.4) we have

Y n n 2
(M_/m_) < 4{1 + max || (Q, - P}
non - ICI ZkeI k k

Using (6.5)and Lemmas 6.7 and 6.8 we find

N cqp - i

kel
1
“zkﬂ 5= [al’k Ry (L JA R, (L) gx”
k>n
1 - |
L [ RAE AR (BT - 47,03 ar
k>n1
£ 3 IQQU+ 1 R
kex kel
<n <n

1 i



o] 1,—
< 2 |[aLZmm)/my gy (Aém—z)/m/dk)"']/‘
k=

1

o«

+ 2 AL M enay(s, 3 s2a 02 5l myg e

k=1

El

) - IQll + n s

where n  is as in Lemma 6.7. This inequality together
with Lemmas 6.1 and 6.9 shows that Mn/mn is bounded in

n. This is summarized in

Theorem 6.1. Under tﬁe assumptions listed in the

first paragraph of this section

M(zl(n),---,zn(n))/m(zl(n),-~-,zn(n))

’

is bounded in n.
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§7. Applications.

Example 7.1. Consider the eigenvalue problem

J/f(“) +# 10(sin DMV (1) = Af(r), 0 <7t <1,

-

1~f(0) = @y = sy = £@ay = .

This is a problem of the type discussed in Sections: 2-6

where

Le = £

Af = 10(sin T)F).

The problem determined by L and the boundary conditions

is self-adjoint and- L has eigenvalues and eigenvectors

Xk = 7wk,

x, (1) Y2 sinkwTt, k = 1,2,°°°.

For these boundary conditions integration by parts
shows that we can take vy = 1 and 6 = 0 in Lemma 3.3.

We find that B8 = 10 sin 1. Thus from (3.8) we have

- 1
r, = max( B (1 + pznz)/é,rp)

where Tp is the unique positive solution of

Lt
T = B |1+ _2r(pr1)* \ %17
(p+t1)*-p*




An elementary calculation shows that

- 1
r, = B (1 + pzﬂz)/é.

The circles c, = 2] Ip*r* - ] < rp} are mutually
disjoint. Thus from Thecrems 3.2 and 3.3 we see that

the the eigenvalues of. L=1+A, satisfy

p’
jp*n® - up[ < 10(sin 1)(1 + pzﬂz)?%.

By Corollary 2 of Theorem 3.3 they are all real.

Using Lemma 4.11 we have

lay, 1, < £

where tp is the positive solution of

1
t =‘s<lu|+t)/‘.
P
Thus
(], < 2 , N 2D,
'up—xn+ll
by Lemma 4.10. Since
1
[Awp(n)!0 < B lwp(n)( )“

3}

1 Ve
B(f v <n>“’lzd’f)

0 p

1 (2)—— e
B (]O wp(n) W%ﬁl) dr)

Y, Y
g (L zwp(n),wp(n))O‘

"

H

Y.
B lL'“wp(n)lo,

58
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oo

1 . 2 Ve
!L/“Wp(n)‘o = Zk=n+l }\k l(ypaxk)oiz,
and
(up - lk)(yp,xk)a = (Ayp,xk)o,
we have
o }\3:2 Vz
|Aw_(n)] < B [(ay_,x.) |?
P ¢ - - _ 2 P>k’
k=n+1 [up Ak[
i }\:yk
k>n+1 [up-XkI
Vi
A
< Btp n+l .
lupfkn+1|

This estimate for lAwp(n)Io is essentially that of
Lemma 4.13.
Thus for p fixed and n > p there is by Theorem

4.4 an ﬂﬁ, 1< Ko iin, such that

v Yu
B /m ) a7 ¢ )
P e _(n).

_ 12 _ +27Y P
[Iup Xn+ll tp:| ’

28]

lup - ﬂgo(n)l <

We must require that iup—An+l]2—t; > 0 for this result to
hold. Similar assumptions must be made relative to other

error estimates in this paragraph; we will not mention them
explicitly. For n = p =1 we can use =2, 1 > A,-r -r

to obtain

t

1/2)\1/’1»
2 1

B(Ml/ml)

2 2142
Clu, =2, 1% - £2]

lu, - n, (W] =
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B(M /m ) 72a e
n n 2 1

m

I A

e, (1)
- 2 _ 1y21%2 1 >
[(X2 A r,) (t;) ]
where t! is the positive solution of

1
. t = B(A1+r»1+t)/“.

Now suppose we have inequalities of the form

Iup - np(n-l)[ < ep(n—l), P=1,**,n-1,
These, together with ]un- anjirn, yield
: 1
g BCM_/m ) A, e
n n n+lp p<n
AR )
v, [(A_,, -0 (n-1)-e_(n-1)12-(x")2]7%
B(M /m ) A .t P P
n n n+l p { y
_ 2_ 292 — 2 "
Chu -2 g 15-t5] BM /m )" X Y -
- - 2_‘n2?/2 i
[(Xn+l Amro) (tp) ]
'
= ep(n),

where t; is the positive solution of

Y
b

B(np(n—l) + sp(n—l) + t) P < n,

BA + v+ ), D = n.

. The numbers t', t; etc., can be computed numerically. Thus

we have
lup - nzo(n)[ < eﬁ(n)

for some Ko, 1< Zo <n. We can conclude ZO = p in

this example as follows. From fhe computed values of
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n,(),***,n,(n) and sp(n) it will be clear that
lnp-nk(n)l > Ep(n);» k= 1l,°°,p-1,ptl,***,n. Hence the
only choice for Zo is ‘p. This will also be true in many
other cases’ and the inequalities- [up—nk(n)l > ap(n),

k # p, are simple to vepify if ép(n) is sufficiently
small since nk(n) E.Ck, k = 1,***,n. Proceeding

inductively we define sp(n), 1<p iin, ns=1l,2,**+ and

establish
lug=nytm) | < e (nd.

We obtain ep(n) from Ep(n) by using the estimate for

¥, which we had in the (n-l)st stage of the éstimating

P

procedure., Clearly 1lim ep
n->n

discussion on the definition of ep(n) and the proof that

(n) ==0 for p fixed. This
£, = p pertains to the other examples in this section.

Values for np(n), e,(n) . were éomputed for 1 <p < n,
ns=1l,2,¢++,20, Tables 1 and 2 contain the computed values
for ﬂp(ﬂ) and ep(n) for p = 1,2, and. .5. Table 3
‘eontains the values of nP<20) and. 59(20)- for p = 1,+++,20,
The values in Table 3 give the best approximations for “Mp s
p = 1l,°++,20, that were obtained.. np(n),. P = lyves,n,
are the eigenvalues of the matriz ((L_x,,%,),),
1<4,k gn, We wlll denote this matrix as well as the
corrasponding operator by. iﬂ. This is a real non=symmetric

matrix. These eigenvalues were computed as follows. Using

the QR method of Franels [18], as implemented in a program
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originally written by Professor B.N. Parlett, the
eigenvalues were computed; we will.call these:numbers the
first approximations to the eigenvalues of ﬁn. Next the
eigenvectors were computed. Then a matrix- P was formed
with these approximate eigenvectcfs.gs columns. Now
P-lﬁnP: has the same eigenvalues as ﬁh and,.assuming

that the column veectors of P are close to. the eigenvectors
cof in’ P"linP should be approximately diagonal and hence
the diagconal elements of P—lﬂnP . should be approximately
equal to .the eigenvalues of in. We will call the diagonal
elements of P“linP the 224 apprcximations to the
eigenvalues of ﬂn. The difference between.the eigenvalues

of in and their Z-Q approximations can be estimated with

Gershgorin's theorem. We use these computéd diagonal-
"elements of P'linP for ni(n),°'°,nn(n).

In general.the off diagonal elements of. P'zﬁnP were

small. Consider for example n = 4. The QR methcd

produces
93.2076349,
1,554,28815,
7,885.89093
and

24,932, L4448,

The diagonal elements of P‘linP are



93.2076495

1,544,28838,

7,885.8919Y4,
and ’

24,932,4458

, . = p-1T -
and the row sums ) la | where (a, ,) = P7IL P are

2#k
L2744 x 1079,
411 x 10 78,
.736 x10 7%,

and

.813 x 10 "3,
Thus, -for instance,
[n,(4) - 93.2076495] < .274x107°.

These estimates can be refined by scaling in the
following way.- Suppose we want a better estimate for
ns(ﬂ). The eigenvalues we are seeking are also the
eigenvalues of the matrix (bk ﬂ) which we obtain from <ak£) by

multiplying the 3£Q row by T and the 32'Cl column by

T7'. The diagonal elements of (b,p) and (a,,) are
the same but the row sums for (bkﬂ) depend on 1. Now
choose 1T as small as possible while keeping the 3Eg
Gershgorin disk separate from the other:disks. Here we
can choose. T = 107! ; with this choice for 1 the.

329 1oy sum for (b, p) is .736 x 107!, We can perform
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such scaling for each eigenvalue. -For n =:10: the radii of

the Gershgorin disks before: sealing were

.197 x1078,
.881 x107%,
.124 x1073,
.723 x1072,
.253 x10 72,
.279,

.209 x102,
.784 x102,
.789 x101%,

Lu51 x107".

The or&ering here is such that the 3d radii gives an

estimate for n,(10) for example. After scaling the

corresponding radii are

..197 x107°,
.603 x1078,
..196 x1077,
824 x107°8,
.704 x1077,
.327 x107°%,
.194 x10 73,
L4875 x1077%,
..329 x1074,

451 x107%,
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These calculations are affected by the round off error
which occurs in the inwversion of P and in the calculation of
P‘IinP. P! was computed in single precision; for n = 4
no element of P™'P - T exceeds in absolute value .3 x1077.
Double precision was used to multiply P71!,. ﬁn, and P.

In addition there is the error which arises when the matrix

-~

Lh is entered in the computer. To reduce this the entries:
in ﬁn were computed in double precision‘and then truncated
to single precision.~ The remaining calculations were all
done in single precision.

For a complete discussion of fhis method: of computing

ZQQ‘ set of approximations for the eigenvalues of a

matrix from an initial set of approximations. for the
eigenvalues and eigenvectors and estimation:of. the resulting
>accuracy using Gershgorin's theorem together with scaling see
Wilkenscn [u2].

In the tables of this section all.figureé—are rounded
to the number of digits presented. The notation .487}2
means .487 x10%., A dash in the table indicates the
corresponding number is the same as the number directly
above it. All of the computations were performed on the

UNIVAC 1108 Computer of the- Cocmputer Science Center of the

University of Maryland.
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00TEETEB:® 909492809 | 4 — z — 07
00TEETEBN £09194809° | h e z — 6T
TOTEETE6H L09+94803° | * —_— z — 8T
TOTEETEGH " 209494809° | # —— Z —_— LT
L60EETE6H " £0919.4809° | —_— z _— 9T
860£ETE6H" 909194809 | # —— z —_— ST
'909494809° | e Z — T
$0979.809° | H —_ z — £T
£09494809° | h —_— z —_— T
209794809° | 4 — / — T
§09494809° | h —_— z —_ 0T

T09h94809° | — 2 | LeLOZEG" 6

L69494809° | h | 006THSST® |¢ | 96L02E6" 8

265194809° | h | 6682%99T° |¢ | $640Z€6° L

TSGH9LB09° | | 8682HIST' |2 | 2640286 9

TSTH9L808° | t | S682#SST* |2 | 9840286° g

h | h88znSST® |z | §9L0ZF6° j

. h | Lz82h38T" |2 | Z8902€6° £

n | £202hSST® |7 | 6ETOZEG z

, z | 6£760€6° T
ST g 7 1 d\u

() u

T °19®lL



Table 2

ep(n)

n\p 1 2 5 15

1 .109510 | 1

2 .28955 ol .s910 | o

3 .12111 ol .2u55 | o

4 .6187 -1! .1210 | O

5 .3577 1| .e91 | -1| .3279 | o

6 .2252 1| .u32 [ -1| .1u42 | o0

7 .1508 ~1| .289 | -1| .s43 |-1

8 .1059 -1| .208 |-1| .s55 |-1

9 772 2| .is8 |-1| .330 |-1
10 .580 2| .111 |-1| .287 |-1
11 47 ~2| . .85 -2| .218 |-1
12 .351 -2| .87 2] 170 |-1
13 .281 -2] .5y ~2| .135 |-1
14 .229 -2 .uy -2 .110 |-1
15 .188 -2| .36 -2| .90 -2 .12 | o
16 .157 -2] .30 -2 .75 20 .8 |1
17 .132 -21 .25 -2{ .63 2l s -1
18 .113 -2 .21 -2| .54 Y I
19 .97 -3] .18 2| .us -2 .2 |-
20 .83 -3] .16 ~2| .40 20 .2 -1




Table 3
P np(zo) ep(20)
.1 932079727 | 2 . 831 -3
2 .155429005 | u .159 -2
3 .788589868 | u | .237 |-2
y .249325000 | 5 . 317 -2
5 .608764606 | 5 .396 -2
6 126237964 | 6 477 -2
7 .233875011 | 6 .560 -2
8 .398983423 | 6 n -2
9 .639096829 | 6 .735 -2
10 .974086689 | 6 . 832 -2
11 142616228 | 7 . 939 -2
12 .201987069 | 7 .106 -1
13 .278209682 | 7 .120 -1
14 .374206342 | 7 .138 -1
15 .493133100 | 7 . 160 -1
16 .638379791 | 7 .191 -1
17 .813570038 | 7 .235 -1
18 .102256125 | 8 .309 -1
19 .126945459 | 8 455 -1
20 .155854502 | 8 .891  |-1
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Example 7.2. Consider the eigenvalue problem for the

Mathieu eguation

—f(z)(T) + 2q(cos 2T)f(t) = Af(1),
£f(0) = f(wn) = 0,
where q° 1is a complex constant. The eigenvalues of this
problem will be the characteristic values of the Mathieu
equation associated with odd periocdic solutions. Here we

let Lf = -f(z) and Af = 2q(cos 21)f. The eigenvalues

and eigenvectcocrs of 'L are
Ak = k2,
/2 . _
T sin kT, k = 1,2,¢°.

L will be non self-adjoint unless q 1is real.

xk(r)

For this example we easily find that

c, = ] [rp?| 2 2[q|}.

If |q| < 3/4 these circles will be mutually disjoint and
there will be one eigenvalue of L in each CP..
Using Theorem 4.4 and Lemma 4.10 we find that for p
fixed and n > p there is an £ , 1 < ﬂo < n, such that
Yo
2
M /m) 4lq]

lu,- mnp (] < - — = €_(n).
P % Cluy-2ggy ) ® - Hlal2172 P

As in Example 7.1 we can define error estimates ep(n),

using at the nth stage the estimates for up from the
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(n-l)-s-:C stage in order to estimate: {up—ln+li. We can show

that £°'= P as in Example 7.1.

+1 .
1L with n
2v2
going fromM 1 to 20.. The £, k element. of the matrix of

The computations were carried out for:. g

I.. with respect to x_ ,*+*,x_ is
n : 1 n :

’szkz + B;r—q* fz cos 2t sinkt sin4ft drt.
The values for nl(n),'°°,nn(n) were. computed using the
power method as developed by E.E. Osborne.[25]; the computer
program was written by Ehflich [14]. These values were not
refined as in Example 7.1. - -Table 4 gives the real and
imaginary parts of np(n) and Table 5 gives the values of
ep(n{ for p =1, 2, and 10. Table 6 contains the values
of np(20) and ep(ZO)r for p = 1,¢°+,20. The
characteristic values for the Mathieu equation for complex

values of (q have recently been tabulated by Blanch and

Clemm [11].
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Table. § e
sp(n)

n\p 1 2 10

1 .57735 | 0

2 .12955 | 0| .25820 | O

3 .7132  |-1| .9284 -1

i L4466 | -1) .5190 | -1

5 .3106 |-1| .3u33 |-1

6 .2269 |-1] .2439 |-1

7 1733 |-1] .1830 |-1

8 1366 |-1| .1lu26 |-1

g .1105 |-1]| .1lisy |-1
10 912  |-2| .938 |-2] .5u485 |-1
11 J747 =2 788 | =2| .2u38 [-1
12 686 |=2| .649 |=-2]| .1554 -1
13 548 |-2| .887 |-2| .1115 |-1
1u 477 | =2! .u8u | =2| .857 |-2
15 419 | -2| 428 |-2| .686 (=2
16 871 |-2| .,376 |=2| .56 [=2
17 381 |-2| .35 |-2| .ure |2
18 287 [=2] ,300 =2 .410 |=2
18 268 |=2( .270 -2| .356 |=2
20 243 | =2 J2u4 | =2| .313 |[=2
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Table 6

P np(ZO) EP(ZO)

1 .54511279 0 -.38341700 0 24276410 -2
2 .39999774 1 ~-.20833277 -1 L24462794 -2
3 .900133u6 1 14238454 -1 24746011 -2
b .16000023 2 .83332760 -2 .25153524 -2
5 .243999998 2 .52084830 -2 .256987720 -2
6 . 36000000 Z 357142985 -2 .26395698 -2
~7 . 49000001 2 26041665 -2 .27é71085 -2
8 .64000000 2 .198u41267 -2 .28356169 —é
9 . 81000000 2 .15625002 -2 .29695245 -2
10 .999999989 2 .12626266 -2 .31349869 -2
11 .12100000 3 .10416668 -2 .33407274 -2
12 - 14400000 é 87412561 -3 .35994473 -2
13 .163900000 3 . 7h404733 -3 .39302948 -2
ih .19600000 3 .64102585 -3 .43634552 -2
15 .22500000 3 .55803573 -3 49493354 -2
16 .25600000 3 . 49019597 ~3 57787746 -2
17 .288999989 3 <43402798 -3 .70335894 ;2
18 .32400000 3 738699679 -3 .91383116 -2
19 . 36100000 3 34722220 -2 .13368434 -1
20 .40000000 3 .32894737 -2 26733725 -1
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f(“) and Af(t) = Tf(z)(T) and

Example 7.3. Let Lf

consider the problem

Lf + Af = Af,
£ = £ = g = £y = ol
The eigenvalues of L are An :.p; where P, sP, %"+ are

the positive solutions of 1 = coshp cosp .. The

unnormalized eigenvectors of L are
PnT

= (o e — e PnyaPnT - - i + oPnye"~
xn(T) (cospn sinp_ -e Je + ( cosp -sinp *e e

+ 2(coshpn— cospn)sinpﬂr¥-2(sinpn-sinh;%)cospnr.

In (3.1) we can let vy = 1,8 = 0 and we find that
' Y2 Ya
= + A + A .
“p (1 P p’

Thus the eigenvalues of L occur one each in the circles
CI,C2,°--‘ and they are real.

By Lemma 4.11 we have

lay 1, = tp

, i
where t  is the positive solution of t = (Iup[+t)’é,
i.e.,

1+ (1+uju?
t_ = P__ .
P 2

Using Lemma 4.10 we find

' -1
lwp(n)l0 < Tp]up—kn+l|
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Integration by parts shows that

]Awp(n)[D < leP(n)I0

-

and, proceeding as in the proof of Lemma 4.13, we obtain

Alk T
iAwp(n){0 L
lup_kn+l‘

Combining these results with Theorem 4.4 shows that

Yo, Y2 A Ys
M_/m )Y A2 arasn DY

lu, - n, ()| =< = e_(n)
P L - 2 ‘ Yay24Y:2 P
0 [u!up-xnﬂl - (1+(1+u|upl) )2]
if n 2 p for some £ < n. Just as in Example 7.1 we
esti@ate Ep(n) by ep(n), using at the nth stage the

estimates for up obtained at the (n-l)Ei stage, and
show that £ = p.

The cbmputational procedures used in this example
are the same as those used in Example 7.1. Table 7 1lists
the values of AP and r, for p < 10, Tables 8 and 9 list
the values of n,(n) and e,(n) for n <20 and p =1
and 5, and Table 10 lists the values of np(20) and .

ep(20) for p < 20.



Table 7
P Ao “p
1 . 5006 3 .229
2 . 38035 ) .622
3 L1ug176 5 L1211y
i .399438 5 .2004
5 .391354 5 .2991
) .1738813 6 L4175
7 .3082084 6| .5557
8 .5084815 6 . 7136
g .7934031 6 .B8912
10 .11840136 71 .10886
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vTable 8
np(n)‘

m\ p 1 5

1 .4950003 3

2 .49u9835 | 3

3. .4949857 | 3

4 .4949863 | 3

5 .4949868 | 3| .89007252

6 .4349870 | 3| .89007080

7 .4949872 | 3| .89007077

8 3949872 | 3| .8300707u

9 .4949873 | 3| .83007073
10 .4949873 | 3 .89007673
11 .4949874 | 3| .89007074
12 —_— 3 —_
13 _— 3 —_
14 —_— 3 —_—
15 _— 3 S—
16 _— 3 S—
17 .49149875 | 3 —_
18 _ 3 _—
19 _— 3 _—
20 S 3 _
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Table 9

ep(n)
: d\p 1 5

1 L4397 0

2 .1963 0

3 .1162 0

Y .773 -1
5 .557 -1] .1u91 1
6 TR -1{ .763 0
7 .322 -1| .512 0
8 .258 -1] .381 0
9 .211 -1| .299 0
10 .176 -1| .2u3 0
11 .149 -1| .203 0
12 .128 -1) .172 0
13 L1111 -1 .1u8 0
14 .97 -2 | .129 0
15 .85 -2 .11t 0
16 .76 -2 | .101 0
17 .68 -2| .90 -1
18 .61 -2 .él -1
19 .55 -21 .73 -1
20 .50 -2| .66 -1




Table 10

P np(ZO)’ ep(ZC)
1| .ugugs7ues | 3| .5027 -2
2 .378185872 | 4| .1370 -1
3 .1u45702886 | 5| .2680 -1
Y .398608925 | 5] .uyu3l -1
5 .890070740 | 5| .6631 -1
6 .173697687 | 6 | .9297 -1
7 .307959661 | 6 | .12u6 0
8 .508157720 | 6 | .1615 0
9 .792994409 | 6 | .20u7 0
10 .118351009 | 7| .2550 0
11 .170308296 | 7 | .31u4 0
12 .237742900 | 7| .385 0
13 .323ué0204 7 .u71 0
1y .430499370 | 7 .578 0
15 .562133345 | 7 .718 0
16 .721868858 | 7| .909 0
17 .91344641% | 7| .119 1
18 .114084031 | 8 | .165 1
19 .1u40825862 | 8 | .256 1
20 .172014325 | 8 | .529 1
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Example 7.4. Consider an eigenvalue problem of the

form
.
- tP oy a2 s,
< WMoy + £0) = 0,
My - f ) = o,

\
if we let Lf =v4f(2) then L has one negative eigenvalue.
If L is redefined by Lf = £(2) 4 5f then L is positive
definite. This will enable us to apply Lemma 4.15. Hence
we consider the eigenvalue equation —f(z) + afcl) + 5f = Af.
The eigenv&lues of the original pfoblem are found by
subtracting 5 from the eigenvalues of.this problem. For
this example we show how explicit values. for the constants
in inequalities (3.1) and (4.4) can be obtained.

Redheffer [26] proved a version of. the inequality in

Lemma 5.3 when £ = 2 in which the constants. are, in a

“certain sense, best possible. He showed that

2

2 1 2
, 2 orlE], v (12 + Dl

| £]

for 11 f € H, and r > 0. If |f[2_<_|f|o we can let

r = 2 in this inequality to obtain

l£]. < /'Z_Iflz/zlflz/z + /12,5 |£] .

1

1f J£], > |£f], we can let r = |f| [£f];' and find

2 Q 2
V. 1.
£, < /T 1el 15l AT el
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Thus in inequality(3.1) we can let Y =.v2 and 6 = /12.5.
Now we consider. inequality (4.4). Proceeding as in
Section 5 we have

g

C(LE, D),

1 _
Io (-£2) 4 55)F ar

2
l

2 (1)z !
Lt slElg - £,

| £

and using the boundary conditions,
we, ), = |£17 + sl - st - o],
Following the proof of Lemma 5.2 in [2] we find
[fco? < mlel] ¢ E g,

for £ E€H, and 0 <h < 1/2. Using this to bound |£(0)]

and lf(l)l2 we find

. 2 Y 2
(LE,£) (1-2n) [£] | + (5- 2 [£]]

|v

2 i 2
(1-2n) || £][] + (4 +2h- H{]f]o.
Letting "h = 1/4 we obtain

2
Nelf < 2ce,£), + 23]f]]

for all f €H, which satisfy the boundary conditions. Thus

in (4.4) we can let ¢, = 2 and c, = 23. These values can

then be used in Lemma 4.15.
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Example 7.5. The eigenvalue problem.

L N Y

£(0)

£(1)

(1]

0,

can be treated by introducing a new independent variable:

1 (T
glt) = (1) exp(- = j a(s) ds).

2 Jg

This transforms the above problem into

(), (a(r)? _ al ¢
g (0 ( m m

) g(t) = 2Ag(t),
g(D) = g(l) = 0.

Hence we can consider the problem as a zero order perturbation

1§I order

‘of a /QQQ order problem rather than as a
perturbation. This transformation, applied to Example 7.4,
would produce non self-adjoint boundary conditions unless

a(0) and a(l) are real.
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